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Abstract

We propose an ansatz for approximate Markov Chain Monte Carlo (MCMC)
inference and learning in multi-layered (deep) generative models that exhibit
biologically plausible dynamics. In particular, our approach builds on a recently
observed connection between the classical integrate-and-fire models of biological
neurons and Bayesian inference based on Langevin dynamics. Utilizing this
connection, we propose that a recurrent neural network model can be derived
that learns to perform inference for a feed-forward generative model from local
learning signals only. When combined with such a generative model – which can
also be trained from information locally available at each neuron – our model
provides new perspectives on how biologically plausible learning algorithms could
be reconciled with statistical learning theory. We experimentally validate our model
using synthetic images as well as the MNIST dataset and show that it approaches
the level of performance of standard machine learning algorithms for training
generative models on these simple tasks.

1 Introduction

How does the brain learn a model of the world; how does it perceive and reason? One very old
hypothesis to this long-standing question is that the brain obtains a model of the world by performing
statistical inference on given sensory information [Helmholtz, 1867, Hinton and Sejnowski, 1983,
Dayan et al., 1995]. Many behavioral neuroscience studies support the idea that human performance
under uncertainty is close to Bayes’ optimal (see e.g. Knill and Pouget [2004], Körding and Wolpert
[2004]). To date, however, the question remains how inference can be implemented in biological
neural circuits. For inference, biological circuits need a representation of the relation between sensory
inputs and unobserved underlying causes in the world.

This problem of inference and learning descriptive representations about the world can be framed as
that of learning a generative model (generating observed stimuli from unobserved causes) with an
accompanying inference procedure (inferring unobserved causes from observed stimuli). Within the
field of machine learning, training such generative models has a long tradition and, more recently,
neural network based generative models have been proven successful in learning complex tasks, e.g.
generating images [Kingma and Welling, 2014, Rezende et al., 2014]. Machine learning algorithms
however often lack biological plausibility as they require the backpropagation of an exact error term
to all neurons in all layers. In the field of computational neuroscience, biologically plausible learning
rules have been derived for single-layer neural networks [Brea et al., 2013, Rezende and Gerstner,
2014]. However, the biologically plausible ideas do not yet generalize to networks with many layers.

The goal of combining these seemingly separate perspectives has recently gained increased attention
from both fields [Bengio and Fischer, 2016, Scellier and Bengio, 2016, Bengio et al., 2016, Marble-
stone et al., 2016]. Perhaps most notably – following an idea first outlined in Hinton [2007] – a series



of papers were recently dedicated to the aim of implementing the classical backpropagation training
procedure for multi-layer networks in a biologically plausible way [Bengio and Fischer, 2016, Scellier
and Bengio, 2016]. Among these Bengio and Fischer [2016] first noticed an interesting connection
between the classical integrate-and-fire models of biological neurons and Bayesian inference based
on Langevin dynamics Duane et al. [1987], Neal [2010].

Building on this idea we propose an ansatz for training a biologically plausible recurrent network
that learns to perform approximate Bayesian inference for a multi-layered generative model using
only layer-local learning signals, which are available in biological circuits. When paired with such a
generative model – that under some assumptions is also implementable in a biologically plausible
manner – our approach provides a consistent perspective on how biological circuits could perform
statistical learning.

2 Background

We consider neural networks of M observed (or visible) neurons characterized through binary
spikes v(t) = x0(t) = [X0,0(t), . . . , X0,M (t)]T , and a series of L layers of latent (or hidden)
neurons – with variable sizes {|1|, . . . , |L|}. We refer to to the spikes of layer l ∈ {1, . . . , L} with
xl(t) = [Xl,0(t), . . . , Xl,|l|(t)]

T . The connections between neurons are assumed to form a directed
acyclic graph, except for a self-connection (which exists for each neuron). For brevity of notation,
and without loss of generality, we will restrict ourselves to fully connected networks that instantiate a
generative model of the visible spikes. In such networks a unit i in layer l is connected to all neurons
in layer l + 1 (and thus receives input xl+1(t)). The neurons in the first layer will then be trained to
generate the activity of the fixed (or “clamped”) visible neurons.

2.1 Integrate-and-fire neural dynamics

We model the spiking behavior of individual neurons as a generalized linear model. Specifically,
following a leaky integrate-and-fire neuron model (a special case of the spike-response model
[Gerstner and Kistler, 2002a,b, Gerstner, 2008]), the change in membrane potential ul,i(t) of a
neuron i in layer l at time t is given as

τ u̇l,i(t) = −ul,i(t) +W l
i,iXl,i(t) + bli +

|l+1|∑
j=1

W l
i,jXl+1,j(t), (1)

where τ is the membrane time constant, bli denotes a bias term, which corresponds to constant
external input. Xl,i(t) =

∑N
f=1 δ(t − t

f
i ) is the spike train of neuron i with spike times tfi . W l

i,j

are connection weights from neuron j to neuron i. Instead of modeling a time-resolved membrane
dynamics during an action potential, we realize the reset of the membrane potential after a spike by a
negative self-connection with weight W l

i,i. Hence, the self-connection W l
i,i is not learned but set to a

pre-determined value in contrast to bias and inter-layer connections.

2.2 Weak coupling approximation to neural dynamics

To simplify the derivation, and make the analogy to existing machine learning models clearer, we
consider a weak coupling approximation [Toyoizumi et al., 2009, Rezende and Gerstner, 2014] to
Equation (1) in which we replace the binary spike trainsXl,i(t) with spiking probabilities ρl,i(ul,i(t))
(or, alternatively, spiking rates). Let ρl,i(t) = ρl,i(ul,i(t)) = g(ul,i(t)), where g is a transfer function.
For our purposes we consider either a sigmoidal transfer function g(u) = 1/(1 + e−u) or a rectified
linear transfer function g(u) = max(0, u), but other common choices such as an exponential transfer
function [Jolivet et al., 2006] could be accommodated. For the weak coupling approximation we then
have

τ u̇l,i(t) = −ul,i(t) + ξi(t) +W l
i,iρl,i(t) + bli +

|l+1|∑
j=1

W l
i,jρl+1,j(t),

with ξi(t) = N
(
0, σ2

i

)
,

(2)
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where ξi(t) captures the noise of the spiking process. The variance σ2
i of the noise process is given as

σ2
i = σ2

0 + 1
τ2 (W l

i,i)
2ρl,i(t) + 1

τ2

∑|l+1|
j=1 (W l

i,j)
2ρl+1,j(t) with σ2

0 being the intrinsic system noise
(which can be chosen arbitrarily).

Finally, to bring Equation (2) into a form that is convenient to simulate and reason about we first define
the notion of a main driving force, i.e. the main contribution to a change in the membrane potential as
Fl,i(t) =

←−
F l,i(t) + F l,i(t). Where

←−
F l,i(t) = W l

i,iρl,i(t) denotes the spike after-potential achieved

by negative self-recurrence and F l,i(t) = bli +
∑|l+1|
j=1 W l

i,jρl+1,j(t) denotes the feed-forward input
dynamics. We then simulate the differential equation in discretized steps yielding the update equation

ut+1
l,i = utl,i + ε

(
F tl,i − utl,i

τ
+ ξti

)
, with ξti = N

(
0, σ2

i /τ
2
)
, (3)

where we mark the dependency on time in the superscript for notational convenience (i.e utl,i is
the value of the membrane potential at discrete time point t), and where ε is the integration step-
size. We refer to the collection of all hidden layer membrane potentials with ut = {utl , . . . ,utL},
where utl = [utl,0, . . . , u

t
l,|l|]

T . Analogously, we refer to the collection of spiking probabilities with
ρt = {ρtl , . . . ,ρtL}, where ρtl = [ρtl,0, . . . , ρ

t
l,|l|]

T , and to the driving forces of neurons in layer l

with Ftl =
←−
F t
l + F

t

l , where
←−
F t
l = [
←−
F t
l,0, . . . ,

←−
F t
l,|l|]

T and F
t

l = [F
t

l,0, . . . , F
t

l,|l|]
T .

3 Generative neural network model

With these definitions in place we can define the likelihood of a given hidden layer’s membrane
potential and spiking probability (assuming, for the moment, a sigmoidal activation function) as

p(ut+1
l |u

t
l+1,u

t
l) = N

(
utl + ε

Ftl − utl
τ

, ε2σ2
l /τ

2I

)
, (4)

p(ρt+1
l |u

t+1
l ) =

1

1 + eu
t+1
l

, (5)

and for the visible neurons we have p(vt+1|ut+1
1 ) = p(ρt+1

0 |ut+1
1 ).

Two interesting observations can be made about Equation (4). First, if the weight of the self-
connection is set to a large negative value such that (W l

i,iρ
t1
l ε)/τ ≈ −(utl−εutl) (or if the weighted sum

of the inputs becomes large), then the dynamics of the activation is dominated by the instantaneous
feed-forward input and thus can be described as purely feed-forward. That is, we would have

p(ut+1
l |u

t
l+1,u

t
l) ≈ p(ut+1

l |u
t
l+1) = N

( ε
τ
F
t

l , ε
2σ2
l /τ

2
)
. (6)

From a machine learning perspective, Equation (6) can be interpreted as the output of a layer in a
fully connected artificial neural network (with additive Gaussian noise). Second, if the weight of the
self-connection is small, constant, and negative – and thus does not completely cancel past spiking
activity in each step – then Equation (4) can be seen as following a Langevin dynamics [Duane et al.,
1987, Neal, 2010] whose change in position is proportional to (Ft

l−u
t
l)/τ , i.e. the dynamics is driven

by the output of a feed-forward neural network. This relationship was (to the best of our knowledge)
first highlighted in Bengio and Fischer [2016] as a potential tool for biologically plausible inference in
neural networks (albeit using energy-based models). We will make use of both observations in order
to derive a local learning procedure – with accompanying inference mechanism – in the following
section.

4 Local learning and approximate inference

Using the definitions from Section 3 we are ready to formulate a learning algorithm for the introduced
network model. To give our learning algorithm a clear interpretation in terms of statistical learning
principles we posit that the goal of the generative network is to generate a given, fixed, input vT
at time-point T from an inferred configuration of the hidden variables uT .1 We will adopt the

1I.e. we note that we do not consider generating temporally changing signals in this manuscript.
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assumption that for the generative network the membrane potential is dominated by the weighted
sum of the inputs (and thus the influence of past activity is negligible), as described in Equation (6).
We note that this assumption is not crucial and could potentially be lifted at the expense of a more
tedious derivation.

Formally, we would like the generative network to maximize the marginal log likelihood of the
observed visible pattern log p(vT ). To accomplish this we first define the joint likelihood of visible
pattern and latent membrane potentials as

p(vT ,uT ) = p(vT |uT1 )p(uTL)

L−1∏
l=1

p(uTl |uTl+1), (7)

where we chose to write p(uTl |uTl+1) instead of p(ρTl |uTl+1); due to their deterministic relationship,
ρTl and uTl are coupled. The marginal log likelihood can then be written as

log p(vT ) = logEp(uT |vT )

[
p(vT ,uT )

]
, (8)

where we assume that p(uT |vT ) factorizes as p(uT |vT ) = p(uT1 |vT )p(uT2 |uT1 ) · · · p(uTL|uTL−1).
Unfortunately, Equation (8) requires the computation of an intractable expectation (as we have no
knowledge about the true posterior p(uT |vT )). Aside from this, the optimization of the marginal
likelihood with respect to the generative network only requires layer-local gradient computations; it
could thus be implemented in a biological circuit without the need for exact error propagation across
neurons. Our major concern therefore is to circumvent the evaluation of the intractable integral by
introducing an approximate inference mechanism. The task for this mechanism is to infer latent
membrane potentials given observed network activity. While one can choose from many of such
approximate inference techniques, we additionally require that the inference procedure is realizable
by a biologically plausible mechanism. Concretely, we will consider to implement approximate
inference with a second inference network that follows the biologically plausible recurrent dynamics
described in Section 3 – and whose weights can be learned purely from observed local network
activity.

4.1 Langevin MCMC solution

We start by noting that samples from p(uT |vT ) (as required in Equation (8)) can be obtained
by Hamiltonian Markov Chain Monte Carlo (MCMC) sampling – and thus in particular through
simulating Langevin Dynamics. Given a direct connection between Langevin dynamics and the
neuronal dynamics in our network, it is appealing to reason about a biologically plausible inference
procedure by first looking at an MCMC solution to the problem.

In particular, we can interpret the application of Langevin dynamics to Equation (8) as a form of
approximate inference in which we replace sampling from the posterior p(uT |vT ) with samples uT
obtained from running Langevin dynamics for a sufficient amount of time. The Langevin dynamics
follows the updates

ut+1
l = utl + ε

∂ log p(vT ,ut)

∂utl
+ ξt, with ξt ∼ N (0, 2εI), (9)

where we have overloaded notation to highlight the similarities to Equation (3). Each simulation step
results in a sample from the proposal distribution p̂(ut+1

l |utl ,vT ) = N
(
utl + ε∂ log p(vT ,ut)

∂ut
l

, 2εI
)

.

This sample can be used as the basis for the next proposal, 2 resulting in a chain of samples that
converges to samples from the true posterior p(uT | vT ).

Aside from this description of the sampling procedure as a dynamical process, we can also use the
definition of Langevin MCMC to rewrite the marginal from Equation (8) as

log p(vT ) ≈ logEp(uT ,u0,...,uT−1|vT )

[
p(vT ,uT )

]
,

with p(uT ,u0, . . . ,uT−1|vT ) = p(u0)

T−1∏
t=0

L∏
l=1

p̂(ut+1
l |u

t
l ,v

T ),
(10)

where we chose the prior p(u0) to be isotropic Gaussian; p(u0) = N (0, I).
2We here omit the Metropolis-Hastings step that is typically used in Monte Carlo techniques. This potentially

biases our inference procedure, although MH acceptance rates for HMC procedures are typically close to 1.
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4.2 Approximate inference through biologically plausible dynamics

While the Langevin dynamics concisely describes the estimation of the marginal – as calculated
through MCMC – it has not (yet) brought us closer to a biologically plausible inference procedure. The
key idea to perform this final step is as follows: inspired by the similarities between Equation (4) and
Equation (9) we will introduce auxiliary inference neurons which are trained such that their dynamics
(according to the spike response model) follows the Langevin dynamics from (9). Hence they can be
used to replace the inference model p(uT ,u0, . . . ,uT−1|vT ) in (10) with an approximate inference
model q(uT ,u0, . . . ,uT−1|vT ) that follows the biologically plausible dynamics. Inspecting the
two equations we can already see that equality will be achieved if Ft

l−u
t
l

τ = ∂ log p(vT ,ut)

∂uT
l

and,

additionally, the noise variables are scaled appropriately. That is, we need (Ft
l−u

t
l)/τ to be a predictor

of the generative model gradient.

This suggests the following setup for deriving q(·). Let

q(ut+1
l |u

t
l−1,u

t
l) = N

(
utl + ε

F̂tl − utl
τ

, ε2σ2
l /τ

2I

)
(11)

be the likelihood of the membrane potential for a given layers’ inference neurons, which are connected
to the neurons in layer l − 1, and therefore F̂tl = [F̂ tl,0, . . . , F̂

t
l,|l|]

T with Fl,i(t) = Ŵ l
i,iρl,i(t) + b̂i +∑|l+1|

j=1 Ŵ l
i,jρl−1,j(t) (and where Ŵ l

i,j and b̂li are the parameters of the inference network). This
likelihood follows the same form as Equation (4) (with its arguments reversed) and thus the same
neuronal dynamics from Equation (3). The only difference being that the inference neurons in layer l
are connected to neurons from layer l − 1 instead of l + 1, i.e. they form a bottom-up rather than
a top-down hierarchy. Using these approximate inference neurons we can write the likelihood of a
chain of samples (a forward simulation of the membrane potentials) as

q(uT ,u0, . . . ,uT−1|vT ) = p(u0)

T−1∏
t=0

L∏
l=1

q(ut+1
l |u

t
l−1,u

t
l). (12)

Using this definition we can measure the distance between the approximate inference distribution
q(uT ,u0, . . . ,uT−1|vT ) and the MCMC inference distribution p(uT ,u0, . . . ,uT−1|vT ) through
the KL divergence

Lu = Eq(uT ,u0,...,uT−1|vT )

[
log

q(uT ,u0, . . . ,uT−1|vT )

p(uT ,u0, . . . ,uT−1|vT )

]
=

L∑
l=1

T−1∑
t=0

KL
(
q(ut+1

l |u
t
l−1,u

t
l)‖p̂(utl |ut+1

l ,vT )
)
,

(13)

where, if we assume that τ and σl are chosen such that ε2σ2
l /τ

2 = 2ε, the KL terms simplify to

KL
(
q(ut+1

l |u
t
l−1,u

t
l)‖p̂(utl |ut+1

l ,vT )
)
∝

(
ε
∂ log p(vT ,ut)

∂utl
− ε F̂

t
l − utl
τ

)2
1

2σ2
l

. (14)

If this KL divergence is minimized, we can replace samples from p̂(utl |u
t+1
l ,vT ) in Equation

(10) with samples from q(ut+1
l |utl−1,utl) yielding the following (biased) estimator to the marginal

likelihood

Lv = Eq(uT ,u0,...,uT−1|vT )

[
log p(vT ,uT )

]
≈ Ep(uT ,u0,...,uT−1|vT )

[
log p(vT ,uT )

]
≤ log p(vT ).

(15)
These derivations suggest a Monte Carlo Expectation Maximization like procedure for training
both the generative and the inference network in which we alternate training of the generative
network with updates to the inference neurons (which should learn to imitate the Langevin dynam-
ics steps and thus, as described above, to predict the gradient of the generative model). More
precisely, let Φ = {W1, b1, . . . ,WL,bL} be the parameters of the generative network and
Ψ = {Ŵ1, b̂1 . . . ,ŴL, b̂L} be the parameters of the inference network. We follow a three step
procedure:
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(1) Inference. With Φ fixed we sample a trajectory of membrane potentials u0, . . .uT ∼
q(uTu1 . . .uT−1|vT ) from the inference network by simulating the neural dynamics of inference
and (fixed) generative network for T steps.

(2) Minimize Lu. In each step we take a gradient descent step to minimize Lu wrt. Ψ.

(3) Maximize Lv. We take a gradient ascent step to maximize Lv wrt. Φ using the sample uT .

Importantly, step (1) only requires simulating the neuronal dynamics and – as mentioned before –
step (3) only requires the computation of local gradients. Step (2) however requires computation of
Equation (14), which involves a calculation of the gradient of p(vT ,ut) with respect to ut in each
step. This involves (biologically implausible) backpropagation through the whole generative network.
However, this gradient can be replaced by a likelihood ratio estimator (often also referred to as a
REINFORCE gradient [Williams, 1992]) that only requires access to local quantities (including local
reconstruction errors).

To derive this estimator we first recall that the KL divergence is exactly minimized if (F̂t
l−u

t
l)/τ

corresponds to the gradient of the log likelihood (at utl). Additionally the gradient of Equation (14)

with respect to the parameters Φ of the inference network will be propotional to ∂p(vT ,ut)
∂ut

l
. This

suggests that we can learn q simply by ensuring that (F̂t
l−u

t
l)/τ “points” towards the minimum of the

joint likelihood. We can achieve this through maximum likelihood optimization, using the gradient
of L̂u = Eq(ut+1

l |ut
l−1,u

t
l)

[log p(vT ,ut)] for ε = 1, instead of the gradient of Lu. A likelihood ratio
estimator can then be trivially obtained for this form as

∂L̂u

∂Φ
= l(vT ,utl)

∂q(ut+1
l |utl−1,utl)
∂Φ

, (16)

where l(vT ,utl) = log p(uL)
∑l−1
i=1 log p(uti|uti+1) is the sum of the local likelihood from layers

below l (i.e. a fraction of the total joint log likelihood log p(vT ,ut)). This gradient now only depends
on the availability of one global signal per layer: a reconstruction error signal corresponding to
the likelihood of reconstructions from subsequent layers. We note that, although this choice for
the gradient of the inference network is somewhat ad-hoc, it results in updates that resemble the
wake-phase updates employed in the wake-sleep algorithm [Hinton et al., 1995]. Unfortunately, using
this changed objective can potentially also bias the inference network, weakening its connection to
true Langevin MCMC inference. To simplify the task for the inference network we can additionally
assume that the input to each layer of the inference neuron is given as the difference between the
previous layer activations utl − u

t−1
l . While our experiments suggest that a learned inference network

based on Equation (16) performs according to our expectations for the considered benchmarks, future
work should focus on deriving more direct, unbiased estimators of the gradient of Equation (14).

5 Relation to existing work

This work aims to present first steps towards bridging the gap between neuroscience and machine
learning, re-using existing terminology and connecting currently emerging ideas. As such, it is related
to and builds upon a large body of work from both the computational neuroscience and the machine
learning community, that preceded this manuscript. Since a complete overview over these two vast
fields would exceed the space constraints of this paper we aim to highlight and concisely explain the
most obvious connections between them and our work. For a more general perspective on how ideas
from machine learning connect to computational neuroscience we refer to Marblestone et al. [2016].

First, the idea of interpreting the temporal dynamics of neuronal circuits as performing Bayesian
inference and learning has appeared several times already in the literature. It can be traced back to
early work by Hinton and Sejnowski [1983] and also appears in more recent work on implementing
inference using STDP rules (see e.g Rezende and Gerstner [2014], Brea et al. [2013]). An interesting
perspective on this idea, which has recently reignited interest in biologically plausible models among
researchers from the machine learning community, was given by Hinton [2007] who suggested that
the classical backpropagation learning algorithm could be implemented by using temporal changes to
represent error gradients. Among these new studies, Bengio and Fischer [2016] further developed the
idea of having neuronal dynamics approximately perform Langevin MCMC, which they employed to
train an energy-based model. This approach – and related subsequent work [Scellier and Bengio, 2016,
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Bengio et al., 2016] – is undoubtedly closely related to our work (and served as the main inspiration).
Our approaches differ in two main respects: (1) they consider energy-based models and their method
requires undirected connections, i.e. symmetric weights, which are biologically implausible, (2) their
overarching aim is to exactly recover backpropagation from the neural dynamics whereas our method
uses a reinforcement-like (neuromodulatory) signal. Whether the second difference is an advantage or
a hindrance of our method is an open question subject to future work. A further difference is that the
authors derive an explicit STDP-like learning rule from their model formulation, a step that is missing
in our approach (we use local gradient-based optimization to minimize the cost functions). Given
these close connections we believe it worthwhile to unify the two perspectives into one framework in
future research.

Second, our model can be likened to a variational autoencoder [Rezende et al., 2014, Kingma and
Welling, 2014] in which the inference network follows recurrent dynamics and learns to perform
MCMC inference (instead of minimizing the evidence lower bound). On a more general level, it is
thus similar to recent work on combining MCMC with variational inference by Salimans et al. [2015],
and could potentially be re-derived within their framework. A combination of variational inference
and a likelihood ratio estimator similar to the one we use has previously been considered e.g. in Mnih
and Gregor [2014]. It would be interesting to reconcile these different perspectives.

Third, our model bears some similarity to the weight sleep algorithm [Hinton et al., 1995] and the
reweighted wake sleep extension [Bornschein and Bengio, 2015]. Both use an importance sampling
estimator to train the inference network that is similar to the one used here, and an EM-like procedure
in which inference and generative network are trained in alternating steps. Both however uses fixed
form inference and generative models, whereas we use a biologically motivated dynamical system
formulation.

Finally, the idea of using a likelihood ratio estimate to provide a learning signal based on the
reconstruction error has been explored for biologically plausible single-layer models in Brea et al.
[2013] and Rezende et al. [2014]. From these Brea et al. [2013] is closely related to our work and
employs a variational inference formulation using a biologically plausible inference network but does
not easily generalize to multiple layers. It served as the second main inspiration for this work.

6 Experiments

We perform experiments using the model described in this paper in two settings. As a first step, and
to visualize the inference process, we apply our model to modeling simple input stimuli consisting
of small images of horizontal bars. Then we perform experiments for modeling a binarized version
of the MNIST digits [Murray and Salakhutdinov, 2009]. This second experiment validates that the
derived model not only consists of a biological plausible network but also performs well on a classical
benchmark for generative models in machine learning. We again emphasize that we only consider
modeling static input stimuli in this paper (but employ a temporal dynamics to perform the inference
process).

6.1 Model setup

We consider training both single-layer and two-layer variants of our model. For the experiment on the
simple bar task we use a single layer inference model with 10 hidden neurons and a corresponding
generative network mapping from the 25 hidden neurons to the 10× 10 dimensional pixel images.
For the MNIST task we used inference and generator networks with 100 neurons in each hidden layer.
For both experiments we chose to use a sigmoidal transfer function (as described in the Methods) in
all layers, which naturally leads to a Bernoulli distribution for the visible variables. The time constant
was arbitrarily chosen as τ = 0.1 for all experiments and we used a step-size of ε = 1× 10−3. The
number of inference steps was set to T = 50 for the MNIST experiment and T = 30 for the simple
bar images.

To train both the generative and the inference network we used standard stochastic gradient descent
on mini-batches of data. That is, we always performed inference for 100 input stimuli v at a time,
computed the average of the local gradients of Lv and the likelihood ratio gradient of Lu over them
and update the respective networks. To update Φ a learning rate of 1 × 10−3 was used whereas a
small learning rate of 1× 10−5 was used to update the parameters Ψ of the inference network – we
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Test images

BPNN+HMC

BPNN

Figure 1: Visualization of 10 generated samples for the bars data using Langevin HMC inference as
well as the approximate inference network. In the visualization each pixel is color coded according to
its probability of being on (yellow = high).

Test images

BPNN+HMC

BPNN

BPNN

Train images

Figure 2: Visualization of generated samples for a two layer network trained on the MNIST digits. In
the visualization each pixel is color coded according to its probability of being on (white = high).

found it important to have a small learning rate in the inference network to avoid oscillations in the
training – in conjunction with the Adam optimizer [Kingma and Ba, 2015] (all other parameters were
set to their default values). We again note that using gradient descent to adapt the network parameters
(albeit using only local quantities to estimate said gradients) is likely not exactly implementable in a
biological circuit but could be approximated by STDP updates in a spiking dynamics. We refer to
Section 7 for a more in-depth discussion.

6.2 Modeling simple input stimuli

For the synthetic data experiment we generated 1000 images. Each image contains one horizontal bar
plus additional pixel noise; exemplary images are depicted in Figure 1 (top). We used these artificial
stimuli to compare our proposed approximate inference network to the Langevin MCMC solution
outlined in Section 4.1.

In particular, we tested three different generative model / inference model pairs for this task: 1)
a generative model trained using Langevin dynamics as inference procedure during training and
during testing; 2) a generative model trained with the approximate inference procedure and tested
using the same approximate inference mechanism for generating samples; 3) the same generative
model as for option 2) but at test time using Langevin dynamics for inference. As a first result, we
observed that all models reached a similar log likelihood during training. We then visually compared
samples for all pairs on a set of noisy bar images. The results are visualized in Figure 1, which shows
that the generated samples for both inference methods combined with the generator network give
qualitatively similar results, indicating that the approximate inference network can learn to predict the
gradient of the joint log likelihood and thus performs well at imitating the transition operation used
in the Langevin dynamics. A video of intermediate generated images when generating for T = 50
time steps using both Langevin dynamics and the learned inference network, which can be found at
http://goo.gl/6cZ1A2, further supports this claim.

6.3 Modeling MNIST images

We next tested our model on the MNIST dataset, a slightly more complicated dataset containing
60000 training and 10000 test images depicting handwritten digits. We again trained a generative
model in combination with Langevin MCMC inference and one using our approximate inference
model. Additionally we considered both single layer and two layer networks for this task. Exemplary
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Table 1: Comparison of our biologically plausible neural networks (BPNN) with state-of-the art
generative models for MNIST. We show results for our model with a true Monte Carlo EM procedure
(BPNN+ MCEM) – assuming biologically implausible access to p(uT ,u0, . . .uT−1|vT ) during
training – and the completely local learning procedure (using the likelihood ratio estimator to
approximately minimize Equation (14)). As a baseline we also include our method combined with a
random inference network replacing the gradient in the Langevin MCMC steps. Results are from
[1] Murray and Salakhutdinov [2009], [2] Murray and Larochelle [2014], [3] Gregor et al. [2014],
[4] Gregor et al. [2015], [5] Mnih and Gregor [2014], [6] Salimans et al. [2015], [7] Bornschein and
Bengio [2015].

MNIST − log p(v) ≤ − log p(v) ≈
DBN (2 layers) [1] 86.22 84.55
EoNADE [2] - 85.10
DARN (1 layer) [3] 88.30 84.13
DRAW [4] 80.97
NVIL (SBN) [5] - 96.7
NVIL (fDARN) [5] - 90.7
HVI + VAE [6] 88.30 85.51
RWS (SBN) [7] - 85.48

BPNN+ random (2 layer) - 181.45
BPNN+ MCEM (1 layer) - 103.64
BPNN+ MCEM (2 layers) - 101.79
BPNN(1 layer) - 105.72
BPNN(2 layers) - 102.50

generated images by two layer networks trained with either inference model are visualized in Figure 2.
The quality of the samples again indicates that our approximate inference model can be successfully
learned for this task.

As a quantitative analysis we compared the quality of the generative model learned with our approach
to state of the art results from the literature. For this purpose we performed a simple monte carlo
estimate of the marginal likelihood p(v) by drawing 50 samples from p(uT ) via a 100 step Langevin
MCMC chain for each test-set sample which are then passed through the learned generator to estimate
the marginal likelihood. We note that this procedure only evaluates the quality of the generator and
does not involve the inference model. We obtain results that approach the state of the art from the
literature as shown in Table 1.

To evaluate the quality of the inference network we additionally measure the KL divergence between
the proposal distribution of the approximate inference network and the MCMC proposal distribution
(as given in (14)) in each step of a 100 step MCMC chain for the 1000 test examples. At the end of
training the average divergence on these examples was 0.284, indicating a good fit.

7 Discussion and Conclusion

In this paper, we presented an algorithm for training multi-layered neural networks that employ a
biologically plausible dynamics. We derived the algorithm from a machine learning perspective that
includes: (1) a hierarchical generative model aiming to model (static) incoming input stimuli, and
(2) an approximate inference network that learns to adapt its neuronal dynamics to approximately
perform MCMC sampling of the latent membrane potentials - the neuronal activities.

It is important to understand that our approach is merely a first step towards developing a biologically
plausible MCMC inference algorithm for generative networks and relies on a number of crucial
assumptions. First, we assume different integration periods for the generative and the inference
network: a small integration period for the generative network, i.e. approximately feed-forward
dynamics, and a large integration period for the inference network, i.e. slow and recurrent dynamics.
Second, our three learning steps implicitly require a local mechanism (on the neuronal level) to
switch between inference and learning in the generative model – although this is a strong assumption
such a switching behavior is not implausible and could be realized by a local inhibitory circuit that
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controls intracellular learning signals such as backpropagating action potentials [Paulsen and Moser,
1998, Häusser and Mel, 2003, Wilmes et al., 2016] in a biological circuit. Third, we require a scalar
local feedback signal corresponding to the layer local log-likelihoods, e.g. a reconstruction matching
error, to compute the likelihood ratio estimate – this could correspond to neuromodulatory signals in
biological circuits [Frémaux and Gerstner, 2015]. Fourth, our implementation at present relies on
gradient based optimization of the model parameters and does not implement an STDP learning rule
(although the optimization is based on local information only). Aside from biological considerations
we want to point out that among these assumptions the third is potentially the most limiting one since
the reliance of our model on a likelihood ratio (REINFORCE) estimator could potentially be a severe
obstacle for scaling up the presented model: It is well known that such estimates have a high variance
which, in our case, grows linearly with the number of neurons.

The presented approach contributes to current research in biologically-plausible learning algorithms,
as synapse-local information (pre- and postsynaptic activity, synaptic weight) and layer-local informa-
tion (scalar neuromodulatory signal, local inhibitory circuits) are sufficient for the algorithm to work.
In contrast to previous work in this area, our algorithm does not require symmetric connections (a
biologically implausible assumption). Overall, our work thus contributes to the larger aim of bridging
the gap between machine learning and biological learning algorithms, which might yield interesting
results for both fields.
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